Discovery could reduce nitrogen pollution and save farmers billions

Researchers at the University of California at Davis have found a way to reduce the amount of nitrogen fertilizer needed for the cereal lifestyle. The discovery could save U.S. farmers billions of dollars a year in fertilizer costs while benefiting the environment.

The research is a challenge from the laboratory of Eduardo Blumwald, an eminent professor of plant science, who has found a new way for cereals to capture the nitrogen they need to grow.

This discovery could also help the environment by reducing air pollution by nitrogen, which can lead to contaminated water resources, increased greenhouse gas emissions and human health problems. The study was published in the journal Plant Biotechnology.

Nitrogen is essential for plant growth and farms depend on chemical fertilizers to increase productivity. But much of what is applied is lost, leaching into soils and groundwater. Blumwald’s research could create a strong choice.

“Nitrogen fertilizers are very, very expensive,” Blumwald said. “Anything you can do to eliminate this cost is crucial. The problem is money on the one hand, but there are also the harmful effects of nitrogen on the environment.”

A new path towards natural fertilizers

Blumwald’s research focuses on increasing the conversion of nitrogen gas in the air to ammonium by soil bacteria – a process known as nitrogen fixing.

Legumes such as peanuts and soybeans have root nodules that can use nitrogen-fixing bacteria to provide nitrogen. ammonium to plants. Cereal plants such as rice and wheat do not have this ability and must rely on the uptake of inorganic nitrogen, such as ammonia and nitrate, from fertilizers in the soil.

“If a plant can produce chemicals that allow soil bacteria to fix atmospheric nitrogen gas, we could modify plants to produce more of these chemicals,” Blumwald said. “These chemicals will induce bacterial nitrogen fixation in the soil and plants will utilize the ammonium formed, thereby reducing the amount of fertilizer used.”

The team de Blumwald used chemical screening and genomics to identify compounds in rice vegetation that enhanced the nitrogen-fixing activity of bacteria.

Then they identified chemical-generating pathways and used gene-editing technology to increase the production of compounds that stimulate biofilm formation. These biofilms contain bacteria that enhance nitrogen conversion. As a result, the nitrogen-fixing activity of bacteria increased, as did the amount of ammonium in the soil for plants.

“Plants are amazing chemical plants,” he said. “What this could do is provide a choice long lasting farming practice that reduces the extreme use of nitrogen fertilizers.”

The pathway could also be used by d other plants. A patent application on the method has been filed by the University of California and is pending.

Dawei Yan, Hiromi Tajima, Howard-Yana Shapiro, Reedmond Fong and Javier Ottaviani of UC Davis contributed to the research doc, as did Lauren Cline of Bayer Crop Science. Ottaviani is also a research associate at Mars Edge.

The research was funded by the Will W. Lester Foundation. Bayer Crop Science supports further research on the subject.

Related Articles

Back to top button